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Abstract

Misfolded o-synuclein (a-syn) aggregates can be present in the cerebrospinal fluid (CSF) of individuals
with Alzheimer s disease (AD), even in the absence of clinical signs of synucleinopathy. This co-pathology
may influence AD progression at the molecular level. Detection of a-synuclein aggregates using seed
amplification assay (SAA) enables stratification of AD patients beyond classical biomarkers included in the
AT(N) framework. The AT(N) framework allows biological classification of AD based on its core pathological
processes: p-amyloid aggregation (A), tau accumulation and hyperphosphorylation (T), and non-specific
neurodegeneration (N). This study aimed to explore whether a-syn co-pathology, detected by SAA, is
associated with altered concentrations and longitudinal trajectories of CSF p-amyloid 42 (Ap42) and
phosphorylated tau 181 (p-taul8l) in the biomarker-defined AD group. Data from A+T+ participants
(N = 609) in the Alzheimer s Disease Neuroimaging Initiative (ADNI) were analysed, using Roche Elecsys
electrochemiluminescence immunoassay (ECLIA) and SAA results. Substantial discrepancies between
clinical diagnosis and AT profiles were observed. Twenty-nine percent of A+T+ participants were o-syn-
positive (S+), indicating a high prevalence of a-syn co-pathology in biologically defined AD. Cross-sectional
comparisons revealed that S+ individuals had lower baseline Ap42 concentrations compared to o-syn-
negative (S—) participants. Linear mixed-effects models (LMEMs) showed a significantly steeper decline in
AP42 over time in the S+ group, supporting the hypothesis that misfolded a-syn aggregation accelerates
amyloid aggregation. However, p-taul 81 levels increased more slowly in S+ than in S— individuals, contrary
to expectations. These associations remained significant after adjustment for age, sex, diagnosis, and
APOE-¢4 genotype. These findings suggest that o-syn co-pathology may affect AD progression through its
interaction with Ap42 and support its integration into biomarker-based classification frameworks.

Keywords: Alzheimer’s disease, synucleinopathy, co-pathology, a-synuclein, p-amyloid 42,
phosphorylated tau 181, cerebrospinal fluid, AT(N) classification.

Introduction AD is characterised by the extracellular neuritic
Alzheimer’s disease is the most prevalent cause  plaques and intercellular neurofibrillary tangles
of dementia worldwide, accounting for up to 80%  formed by B-amyloid and hyperphosphorylated tau,
of cases [1]. It was estimated that approximately  respectively [3]. More than 98% of clinical trials for
416 million individuals are affected globally, resulting ~ AD treatments have failed, mainly due to the high
in a significant economic and social burden [2]. rate of misdiagnosis [4]. Advances in biomarker

* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did
not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.Pdf

© P. Vyniavska, V. Shpylchyn, 2025



20 e-ISSN 2663-0613. Haykosi 3anucku HaYKMA. Bionoris i exornoris. 2025. Tom 8

Table 1
AT(N) classification for AD and corresponding cognitive stages. Modified from [7-9]
AT(N) Cognitive stage
Profile CN MCI Dementia Pathology
A-T-(N)— Normal AD biomarkers Normal aging
Preclinical AD .
A+T-(N)— el Ghangs AD pathological change
A+T+(N)— Preclinical AD Alzheimer’s disease Alzheimer’s continuum
A+T+H(N)+ Preclinical AD Alzheimer’s disease
A+T(N)+ AD and concomitant suspected non-AD pathologic
change
. Cerebrovascular disease, prion disease, and
A-T+(N)- Non-AD pathological change carly tauopathies
A-T-(N)+ A fifhaitaten] @l Limbic-predominant age-related TPD-43
encephalopathy
. Vascular dementia, tauopathies, dementia with
ARG Wm=hID et raloieal el Lewy bodies, primary age-related tauopathy
Footnote:

1. The AT(N) framework enables classification of AD based on the presence (+) or absence (—) of amyloid (A), tau (T),

and neurodegeneration (N) pathologies.

2. CN — cognitively normal; MCI — mild cognitive impairment.

research have enabled a shift from the clinical
diagnosis of AD, traditionally based on cognitive
symptoms, to a more accurate biological definition
through the AT(N) framework (Table 1) [5,6].

The AT(N) classification can be based on various
biomarker sources, including positron emission
tomography (PET) neuroimaging and cerebrospinal
fluid (CSF) assays [10]. The fully automated Roche
Elecsys electrochemiluminescence immunoassay
(ECLIA) provides an accessible and cost-effective
method, offering high concordance with PET and
neuropathological findings [11-13]. Established
quantitative cut-offs for CSF B-amyloid 42 (Ap42)
and phosphorylated tau at threonine 181 (p-taul81)
measured with Roche Elecsys ECLIA allow accurate
and precise categorisation into AD-positive and
AD-negative profiles [14-16].

Despite the utility of the AT(N) framework in
defining AD biologically, the disease rarely exists in
its pure form. In 56% to 94% of cases, it co-occurs
with other neuropathological processes that may
influence disease progression [17-19]. The most
common comorbidities include cerebrovascular
pathologies, tauopathies, and synucleinopathies,
such as Parkinson’s disease (PD) and Lewy-body
dementia (LBD), which are characterised by
misfolded a-synuclein (0-syn) aggregation. Animal
studies suggest that o-syn promotes p-amyloid
aggregation and tau accumulation via prion-like
spreading [20-22], but translation to humans remains
limited [23,24]. Biomarkers offer an alternative for
modelling these processes. The seed amplification
assay (SAA) allows in vivo detection of misfolded
a-syn aggregates in CSF. This study aims to

investigate the association between misfolded a-syn
aggregates and core AD biomarkers CSF AB42 and
p-taul81 using data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).

Materials and methods

Data used in the preparation of this article were
obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. Its original goal was to assess whether
serial MRI, PET, biomarkers, and clinical assessments
could track AD progression. Current aims include
biomarker validation for clinical trials and improving
diagnostic accuracy across diverse populations. All
ADNI study procedures were approved by local ethics
committees and conducted in accordance with the
Declaration of Helsinki and Good Clinical Practice
guidelines. Written informed consents were obtained
from all participants.

This study included participants from the ADNI
who had CSF samples analysed for Ap42, p-taul81,
and a-synuclein. Demographic variables (age, sex,
ethnicity, race), clinical diagnosis, APOE genotype,
and biomarker results were retrieved from the ADNI
database. CSF AB42 and p-taul81 concentrations were
measured using automated ECLIA on the Roche Elec-
sys platform at the ADNI Biomarker Core Laboratory
(University of Pennsylvania Medical Center). Samples
with values outside the validated detection ranges
(AP42: 200-1700 pg/mL; p-taul81: 8-120 pg/mL)
were excluded. Participants were classified into
AT profiles using established cut-offs: A+ if
AB42 <1026 pg/mL and T+ if p-taul81 > 22 pg/mL[15].
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Misfolded a-synuclein aggregates were detected
using the SAA at the Amprion Clinical Laboratory
under CLIA certification. Only samples classified
as “Detected-1” (LBD-type) or “Not Detected”
were included; those labelled as “Detected-2”
(MSA-type), “Intermediate”, and visibly discoloured
due to hemoglobin contamination were excluded.
Participants with “Detected-1" results were assigned
to the S+ group, and those with “Not Detected” to the
S— group. APOE genotyping was based on two SNPs
(rs429358, 1s7412) and performed via restriction
fragment length polymorphism (RFLP) analysis.
Only the presence or absence of the APOE &4 allele
was considered in this study.

All statistical analyses were conducted in
R version 4.3.2. A p-value < 0.05 was considered
statistically significant.

Contingency tables were used to assess the
distribution of AT profiles across clinical diagnoses,
and the distribution of a-synuclein (S) profiles
within each AT group. Pairwise group comparisons
between S— and S+ participants within the A+T+
group were performed to assess differences between
demographic, clinical and biomarker. The chi-
squared test or Fisher’s exact test was applied for
categorical variables. The Wilcoxon rank sum test
was used for continuous variables. Baseline
differences in log-transformed CSF AP42 and
p-taul81 levels were assessed using analysis of
covariance (ANCOVA), adjusted for age, sex,
clinical diagnosis, and APOE-&4 carrier status.

Participants with two or more measurements of
CSF AB42 and p-taul81 were included in the
longitudinal analysis. Linear mixed-effects models
(LMEMs) were used to assess whether a-syn SAA
(S) status predicted the rate of change in log-
transformed AB42 and p-taul81 levels over time
within the A+T+ group. Each model included fixed
effects for time (months since baseline), S status,
their interaction, and covariates age, sex, clinical
diagnosis, and APOE-e4 carrier status. Random
intercepts were included to account for individual
baseline differences. Random slopes were estimated
at the group level due to the limited number of
repeated measures per participant. Two LMEMs
were fitted: (1) prediction of AP42 change based
on S status; (2) prediction of p-taul81 change based
on S status. These models were used to evaluate:
the change in biomarker levels over time in
S— individuals; the change in biomarker levels over
time in S+ individuals; the difference in rate of
change between S+ and S— groups. All models were
fitted using restricted maximum likelihood (REML)
estimation, with Satterthwaite’s method used to
approximate degrees of freedom.

Results and discussion

The final dataset included 1444 ADNI
participants: 508 CN, 679 with MCI, and 257 with
dementia due to AD. They were classified in four
biomarker groups based on AT profiles derived from
CSF AB42 and p-taul81 levels: amyloid-negative
and tau-negative (A—T—), amyloid-negative and tau-
positive (A—T+), amyloid-positive and tau-negative
(A+T-), amyloid-positive and tau-positive (A+T+).
A substantial mismatch was observed between
clinical diagnoses and AT profiles (Fig. 1). Only
78% of clinically diagnosed AD cases were A+T+,
14% were A+T—, 3% were A-T+, and 5% had
normal CSF AB42 and p-taul81 levels. This is
consistent with a previous autopsy study showing
76% agreement between clinical and confirmed
AD diagnosis [25]. In the MCI group, only 47%
were A+T+; 22% were A+T—. Notably, 22% were
A-T—, showing no AD pathological change. These
participants may have non-AD cognitive
impairment due to other causes, such as sleep
disorders or depression [26]. Among CN
participants, 17% were already A+T+, suggesting
preclinical AD; 25% were A+T—, indicating
amyloid accumulation without tau pathology. These
individuals are at high risk for progression. A PET
study in CN individuals reported similar findings,
with 9.1% A+T+ individuals who showed the
fastest cognitive decline [27].

Misfolded o-synuclein was detected in all AT
profiles (Fig. 2). The highest prevalence of S+
individuals was observed in the A+T+ group
(29%), followed by A+T— (24%), A-T+ (20%),
and A—T— (15%). Similar prevalence of comorbid
synucleinopathy among AD cases has been
reported in neuropathological studies. For example,
postmortem data from the Mayo Clinic Brain Bank
revealed that 33% of clinically diagnosed pure AD
cases showed Lewy body co-pathology [28].

Clinical, = demographic, and  biomarker
characteristics were compared between S— (N=431)
and S+ (N = 178) participants within the A+T+
group and summarised in Table 2. The distribution
of clinical diagnoses was significantly different
(p = 0.002), with a higher frequency of AD (42%)
and a lower frequency (9%) of CN in the S+ group.
These findings suggest that a-synuclein co-
pathology may be associated with more advanced
AD clinical stages. No significant differences were
found in age, sex, race, ethnicity, or APOE-¢4 carrier
status between S+ and S— individuals. The ADNI
cohort represented the limited racial and ethnical
diversity with most participants being White and
non-Hispanic. Overall, the demographic profile was
typical for late-onset AD [29].
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Fig. 1. Distribution of AT biomarker profiles across clinical diagnostic groups. The size and colour intensity of the circles
represent the proportion of participants within each clinical diagnosis group: CN — cognitively normal; MCI — mild
cognitive impairment; AD — Alzheimer’s disease dementia. Participants were classified into one of four biomarker profiles
based on CSF AB42 and p-taul81 levels: A—T—— amyloid-negative and tau-negative; A—T+ — amyloid-negative and
tau-positive; A+T— — amyloid-positive and tau-negative; A+T+ — amyloid-positive and tau-positive.
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Fig. 2. Distribution of a-synuclein SAA positivity across
AT biomarker profiles. Each circle represents the proportion
of a-synuclein profiles within each AT biomarker group:

S— — a-synuclein-negative; S+ — a-synuclein-positive;
A-T-— amyloid-negative and tau-negative; A—T+ —
amyloid-negative and tau-positive; A+T— — amyloid-
positive and tau-negative; A+T+ — amyloid-positive and
tau-positive. Blue circles show the percentage of

S— individuals; red circles show the percentage of

S+ individuals. Circle size corresponds to the proportion of
patients in each subgroup.
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Table 2
Clinical, demographic, and biomarker characteristics of A+T+ participants stratified
by a-synuclein SAA status
R . A+T+ group
Characteristic Categories S (N=431) S+ (N=178) P-value
Clinical Diagnosis 0.002>
CN 72 (16.7%) 16 (9.0%)
MCI 234 (54.3%) 87 (48.9%)
AD 125 (29.0%) 75 (42.1%)
Age (years) 74 [69-78] 75 [70-79] 0.0543
Sex 0.6
Female 200 (46.4%) 79 (44.4%)
Male 231 (53.6%) 99 (55.6%)
Ethnicity >0.9*
Not Hispanic or Latino 418 (97.0%) 174 (97.8%)
Hispanic or Latino 10 (2.3%) 3 (1.7%)
Unknown 3 (0.7%) 1 (0.6%)
Race 0.8*
White 411 (95.4%) 173 (97.2%)
Black 11 (2.6%) 2 (1.1%)
Asian 3 (0.7%) 1 (0.6%)
Other 6 (1.4%) 2 (1.1%)
APOE-¢4 Carrier Status 0.5?
Non-carrier 125 (29.0%) 47 (26.4%)
Carrier 306 (71.0%) 131 (73.6%)
CSF AB42 (pg/mL) 652 [511-776] 616 [493-744] 0.07°
CSF p-taul81 (pg/mL) 34 [28-46] 34 [28-45] 0.5°

Footnote:
1. N (%); median [Q1-Q3]
2. Pearson’s Chi-squared test
3. Wilcoxon rank sum test
4. Fisher’s exact test

5. ANCOVA adjusted for age, sex, clinical diagnosis, and APOE-¢4 carrier status

Lower CSF AB42 concentrations were observed
in the S+ group (616 pg/mL, IQR: 493-744) com-
pared to the S— group (652 pg/mL, IQR: 511-776),
showing no statistical significance after adjustment
(p = 0.07). This trend is consistent with prior find-
ings suggesting that a-synuclein aggregation may
enhance amyloid deposition [30]. In contrast,
p-taul81 levels were nearly identical in both groups
(median 34 pg/mL, IQR: 28-46 in S—, IQR: 28-45
in S+), with no significant difference (p = 0.5).
These results suggest that a-syn co-pathology is as-
sociated with amyloid burden rather than with tau
pathology.

Participants with >2 CSF measurements (N = 699)
were analysed to explore AT profile stability over
time. Most individuals (79.5%) retained a stable AT
profile. The remaining 21.5% (N = 150) showed at
least one AT profile change (Fig. 3). Among them,
125 showed different profiles between baseline and
final timepoints (Fig. 4). The remaining 25 showed
intermediate transitions but reverted to their initial
AT profile. Most profile changes followed a typical

amyloid-first pattern of AD progression. For example,
62.5% of A—T— participants converted to A+T—, and
all baseline A—T+ participants progressed to A+T+.
Profile reversions were observed in 14 A+T+ and
17 A+T- individuals among CN and MCI partici-
pants only, suggesting instability during early disease
stages. Two subgroups of A+T+ participants
demonstrated distinct reversion patterns. The first
subgroup (N = 5) transitioned from A+T+ to A-T+,
accompanied by a rise in AP42 median from
963.2 pg/mL (IQR: 935.3-976.6) to 1082.0 pg/mL
(IQR: 1081.0-1099.0). The second subgroup (N =9)
reverted from A+T+ to A+T—, with a decrease in
p-taul81 median from 23.7 pg/mL (IQR: 22.8-24.7)
to 21.6 pg/mL (IQR: 20.6-21.7). These reversions
occurred with biomarker values near diagnostic cut-
offs, suggesting that slight fluctuations around
threshold levels may drive profile instability. Similar
atypical progression patterns have been reported
previously, including tau- or neurodegeneration-
first patterns and reversals to normal biomarker
status [31,32].
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Fig. 3. Sankey diagram of intermediate AT profile transitions across multiple visits in participants with > 3 AT timepoints
and > 2 different profiles. The first node represents the AT profile and baseline visit. The following nodes represent the nest
AT profile transition at any given time point after baseline. Links represent direction and frequency of transitions.

A-T- (n=40)

A+T- (n=49)

AT-(n=14)

Fig. 4. Sankey diagram of transitions between AT profiles from the first to the last biomarker assessment among participants
with at least two CSF AB42 and p-taul81 measurements. Each flow represents the number of individuals moving between
profiles. Left and right nodes represent the first and the last AT profile. Node sizes reflect the number of individuals in each
profile at each time point. Links represent direction and frequency of transitions.

In the model for log-transformed AB42 (Table 3),
S+ status was not significantly associated with
baseline AB42 levels (B =—0.042). In the S— group,
AP42 levels did not change significantly over time
(B = 0.0008, p = 0.25). However, a significant
interaction between time and S status was observed
(B=-0.0016, p <0.01), indicating a faster decline in
AP42 levels among S+ participants. Male

participants had significantly higher AB42 levels
(B = 0.089, p < 0.001). APOE-g4 carriers showed
significantly lower Ap42 levels (p =-0.09, p<0.001).
Participants diagnosed with AD had lower baseline
AP42 compared to CN (B = —0.059, p = 0.03),
while those with MCI did not differ significantly
(B = 0.008, p = 0.74). The random intercept for
participants showed substantial inter-individual
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variability (variance = 0.066), while the lower
residual variance (0.016) reflected relatively
small within-subject variation. The marginal R?
for the model was 0.078, meaning 7.8% of
variance was explained by fixed effects. The
conditional R was 0.816, indicating that the full
model accounting for both fixed and random
effects explained approximately 82% of the
variance in AB42 levels.

In the model for log-transformed p-taul8l
(Table 4), time was significantly associated with
increasing concentrations (B = 0.0039, p < 0.001).
A significant interaction between time and S status
was also observed (B=-0.002, p<0.001), indicating
that S+ individuals exhibited a slower rate of
increase in p-taul81 concentrations over time
compared to S— individuals. S status alone was not
associated with  baseline p-taul81 levels
(B =-0.0081, p = 0.78). Male sex was significantly
associated with higher p-taul81 concentrations
(B=0.076, p=0.004). MCI participants had higher
baseline levels than CN (B = 0.048, p = 0.03). No
significant difference was found for participants
with AD compared to CN (f = 0.031, p = 0.22).

APOE-¢g4 carrier status was not associated with
p-taul81 (B = 0.0082, p = 0.78). The random
intercept variance was 0.095, with the residual
variance of 0.01, suggesting higher between-subject
variability than within-subject variability. The
marginal R? for the model was 0.026, meaning
2.6% of variance was explained by fixed effects. The
conditional R* was 0.909, indicating that the full
model accounting for both fixed and random effects
explained 90.9% of the variance in p-taul81 levels.
Predicted biomarker trajectories showed
different longitudinal patterns of CSF AP42 and
p-taul81 in A+T+ individuals depending on the
presence of misfolded a-syn aggregates (Figs. 5 and 6).
While baseline AP42 concentrations were not
significantly different (p = 0.1) between S+ and S—
groups, the rate of decline over time was significantly
greater in S+ individuals (p = 0.001). This supports
the hypothesis that o-synuclein co-pathology
accelerates amyloid aggregation in the brain. In
contrast, no progressive increase in p-taul81 was
observed across the full cohort. Instead, S+
individuals displayed a stable trajectory of p-taul81
over time, while S— individuals exhibited a moderate

Table 3
Linear mixed-effects models were fitted to evaluate longitudinal changes
in log-transformed CSF AB42 levels in A+T+ participants
Fixed Effect B SE DF t-value p-value
(Intercept) 6.42 0.05512 676.4 116.466 <0.001
Time (months) 0.0008 0.0007087 583.5 1.159 0.25
S+ -0.042 0.02573 632.1 -1.625 0.1
Time x S+ -0.0016 0.0005037 567.7 -3.233 0.001
Male 0.089 0.02311 587.0 3.831 <0.001
MCI vs. CN 0.008 0.0247 1067.0 0.338 0.74
AD vs. CN -0.059 0.02713 1078.0 -2.174 0.03
APOE4 Carrier -0.09 0.0258 585.6 -3.477 <0.001
Footnote:

1. The table reports the estimated 3 coefficients for each fixed effect, their standard errors (SE), degrees of freedom (DF), t-statistics (t-value),

and the associated p-values.

Table 4
Linear mixed-effects models were fitted to evaluate longitudinal changes
in log-transformed CSF p-taul81 levels in A+T+ participants
Fixed Effect B SE DF t-value p-value
(Intercept) 3.458 0.06151 651.0 56.22 <0.001
Time (months) 0.0039 0.0005592 532.9 6.978 <0.001
S+ -0.0081 0.02917 598.3 -0.279 0.8
Time x S+ -0.002 0.02648 577.5 2.861 <0.001
Male 0.076 0.0223 889.8 2.148 0.004
MCI vs. CN 0.048 0.02512 957.2 1.23 0.03
AD vs. CN 0.031 0.02957 576.6 0.276 0.2
APOE4 Carrier 0.0082 0.0003952 519.0 -5.028 0.8
Footnote:

1. The table reports the estimated B coefficients for each fixed effect, their standard errors (SE), degrees of freedom (DF), t-statistics (t-value),

and the associated p-values.
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Fig. 5. Predicted longitudinal trajectories of log-transformed CSF AB42 levels over time in A+T+ participants,
stratified by a-synuclein seeding activity status. Shaded ribbons represent 95% confidence intervals.
Adjusted for age, sex, diagnosis, APOE-g4 carrier status.
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Fig. 6. Predicted longitudinal trajectories of log-transformed CSF p-taul81 levels over time in A+T+ participants,
stratified by a-synuclein seeding activity status. Shaded ribbons represent 95% confidence intervals.
Adjusted for age, sex, diagnosis, APOE-g4 carrier status.
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upward trend. The predicted p-taul81 rate of
change was significantly slower in the S+ group
compared to the S— group (p < 0.001). These
findings differ from the typical pattern of steadily
increasing tau pathology in AD and may reflect
limitations in measuring tau dynamics using CSF
p-taul8l.

Similarly, Pichet Binette et al. [33] reported
stronger associations between o-synuclein and
AP PET signal, but not with tau PET trajectories.
Franzmeier et al. [34] demonstrated that S+
exacerbates Af-related tau accumulation, as
measured by tau PET, and accelerates cognitive
decline. Tosun et al. [30,35], using ADNI CSF
biomarker data, found no significant longitudinal
differences in AP42 or p-taul81 by S status, but
reported earlier symptom onset and faster clinical
progression in S+ participants.

Conclusions

Misfolded a-synuclein aggregates were detected
in 29% of A+T+ individuals. S+ status was
associated with a significantly faster decline in CSF
AP42 but not with baseline levels. In contrast,
p-taul81 levels increased more slowly in the
S+ group. Approximately 20% of ADNI participants
showed changes in AT profiles over time, occurring
only in CN and MCI individuals near diagnostic

cut-offs. SAA status did not influence baseline
biomarker concentrations independently. Sex,
clinical diagnosis, and APOE-e4 genotype

contributed to biomarker variability. Results support

the inclusion of a-synuclein status in the AT(N)
framework to improve biological stratification of
Alzheimer’s disease.
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Bunsicbka II. O., llInuasunn B. B.
Harmionanpauii yHiBepcuteT «Kneo-MormmsiHebka akanemis» (HaYKMA), Kuis, Ykpaina

3B’SI30K CYINYTHBOI ATOJIOI'Ti ATb®A-CUHYKJIEIHY
3 PIBHSIMHU BETA-AMLJIOITY TA ®OCP®OPUJIBOBAHOI'O TAY-BLIIKA
TPU XBOPOBI AJIBLITEVMEPA

HenpaBuiibHO 3ropHYTI arperard o-CHHYKJICTHY (0-Syn) MOXKyTh OyTH B CIIMHHOMO3KOBIH pifvHI
ocib 13 xBopoOoro AnbireiiMepa (XA) HaBiTh 0e3 KIIIHIYHUX 03HAK CHHYKJIeTHOMaTii. Llst cymyTHS maromorist
MOJKe BIUIMBATH HA MPOrpecyBaHHs XA Ha MOJICKYJISIPHOMY piBHI. BUSIBICHHS arperariB o-CHHYKIICIHY 3a
nornomororo Metony seed amplification assay (SAA) nae 3mMory cTparrgikyBaTy MalieHTiB i3 XA 3a MeKaMu
KJIaCHYHUX OlomapkepiB, mo BXoasTh 10 paMku AT(N). Ctpykrypa AT(N) gae 3Mory 31iHCHUTH O10J0TTYHY
kiacugikaiiro XA Ha OCHOBI il OCHOBHUX NATOJIOTIYHUX TPOLIECIB: arperaiiist B-aminoiny (A), HaKOITMYESHHS
Tay-Outka i rinepdochopumosanns (T) ta Hecnenudiuna Heliponerenepaitis (N). Mera noc/ixKeHHsT —
3’sICYBaTH, UM OB’ si3aHa CYITyTHS MATOJIOTS 0-Syn, BUSIBJICHA 32 IOTIOMOTO0 SA A, 31 3MiHCHUMH KOHIICHTpA-
iSMH Ta TIO3JIOBKHIME Tpaektopisimu f-aminoiny 42 (AP42) ta dochopmiboanoro tay 181 (p-taul8l)
y rpymi oci6 i3 XA, Bu3HaueHili 3a 6iomapkepamu. Jlani yuacuukiB A+T+ (N = 609) Iximiatneu HelipoBizyaiti-
3arii xBopoou Asbireiivepa (ADNI) Oyio mpoaHami30BaHO 3 BAKOPUCTAHHIM PE3YJIBTATIB SICKTPOXEMITIO-
MiHecIeHTHOTro iMmyHopepMmeHnTHoro aHaii3zy Roche Elecsys (ECLIA) Ta SAA. Criocrepirajiucsi CyTTeBI po3-
ODKHOCTI MK KIIHIYHEM giarHo3oM Ta mpodimsivu AT. 29 % yuacuukiB A+T+ Oynu 0-Syn-Iio3UTHBHUMHA
(S+), 110 CBIAYUTH MPO 3HAYHY MOIIMPEHICTH CYMyTHROI MATOJOTIT 0-Syn Y pa3i 610JIOTIYHO BU3HAYECHOT XBO-
pobu AnprreiimMepa. IlepexpecHi MOPIBHAHHS IMOKa3aJd, M0 B 0ci® S+ Oyny HIKYI BUXITHI KOHIIEHTpAIi
AP42 nopiBHSIHO 3 0-Syn-HeraTUBHUMHU (S—) yuacHukamu. JIiHiiHI Moneni 3Mitmanux epekris (LMEM) moka-
3aJId 3HAYHO PisKille 3HKeHHs AB42 3 yacoM y rpyIi S+, 10 MiATBEPIKYE TilIOTE3y PO TE, IO HENPABUIIb-
HO 3TOPHYTa arperariis o-syn IpUIIBUIIYE arperaiiiro aminaoiny. OjHak piBHi p-taul81 3pocTainu moBuIbHIIIE
B 0ci0 S+, HIXK y 0ci0 S—, yeyneped ouikyBaHHsM. L{i 3B’ SI3KH 3aJIMIIATHCS 3HAYHUMH ITICIIsT KOPUTYBaHHS Ha
BIK, CTarh, AiarHo3 ta reHotun APOE-g4. OTpumani pe3yabTaTu CBi4aTh Mpo Te, IO CYITyTHS MaTONOris
0-Syn MOKe BIUTHBATH Ha [TPOrPECYBaHHs XBOpoOH Aulblireiimepa uepes B3aemoito 3 AB42, a oTxe, 1ie 1ae
3MOTY TIITPUMYBATH i IHTErpailito B KiIacu}ikalliiiHi paMKu Ha OCHOBI OioMapKepiB.

KonarouoBi cioBa: xBopoba AnbureiiMepa, CHHYKIETHOMATIS, CYIyTHS MAaTOJIOTIS, O-CHHYKIEIH,
B-aminoin 42, pochopunbosanuii Tay-181, cnuHHOMO3K0Ba pinuHa, kiacudikaris AT(N).
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